Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066005

RESUMO

Ensuring optimal housing conditions for laboratory animals is a crucial prerequisite for high-quality and ethically justifiable in vivo science. In addition to guaranteeing animal welfare and promoting scientific validity, environmental sustainability is also increasingly gaining attention in laboratory animal facilities. Consequently, comprehensive management of such aspects is one of the core tasks of any research vivarium. Hygienic monitoring and adhering to standardized experimental protocols have been highlighted in the past; nevertheless, various environmental aspects of housing animals still need to be evaluated in greater depth. In this pilot study, we aimed at assessing the suitability of spelt and corncob as economical and ecologically friendly bedding substrates as compared with commonly used aspen wood chips. Therefore, following a descriptive study design, we examined the preferences of male and female Wistar rats for corncob and spelt under specific conditions. In addition, we evaluated potential effects on behavior, metabolism, and stress physiology. The type of bedding did not seem to influence behavior in the observed parameters but did have time- and sex-dependent effects on blood glucose. Furthermore, housing animals on spelt led to a significant reduction in food consumption, probably compensated for by the intake of spelt, and although it did not influence glucose levels, it may have certainly impacted the nutrient supply. Our descriptive pilot study, therefore, highlights the importance of a thorough condition-associated evaluation of even seemingly marginal environmental factors, when balancing potential cost-benefit advances in sustainability and questions of standardization and reproducibility of experimental protocols.

2.
ESC Heart Fail ; 6(4): 711-722, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31025825

RESUMO

AIMS: Myocardial infarction (MI) and heart failure (HF) are risk factors for the development of depression, additionally worsening the quality of life and patient outcome. How HF causes depression and how depression promotes HF remain mechanistically unclear, which is at least partly caused by the difficulty of in vivo modelling of psychosomatic co-morbidity. We aimed to study the potential sequence of events with respect to different depression aspects upon HF. METHODS AND RESULTS: Male C57BL6 mice underwent MI, followed by behavioural and echocardiographic characterization. Motility, exploration, and anxiety-like behaviour were unaffected in mice after MI. We did not observe increased depressive-like behaviour in the sucrose preference, tail suspension, or Porsolt forced swim test. Mice did not display signs of learned helplessness (LH) when compared to sham. Accordingly, cluster analysis revealed only a slightly higher quota of LH in HF (38%) vs. sham mice (32%). But strikingly, three-group cluster analysis revealed an additional intermediate subpopulation at risk for LH after HF (29%). Interestingly, this population featured elevated cardiac expression of nr4a1. CONCLUSIONS: The LH paradigm uncovered a subtle predisposition to depressive-like behaviour after MI, whereas testing for anhedonia and despair was insufficient to show a behavioural shift in mice. Therefore, we suggest an accumulating risk profile and a multiple-hits hypothesis regarding the pathogenesis of co-morbid depression after MI. Symptoms of LH may present a marker of subclinical depression after MI, the impact of which remains to be investigated. The proposed sequence of behavioural testing enables the mechanistic dissection of cardio-psychogenic signalling in the future.


Assuntos
Depressão/etiologia , Insuficiência Cardíaca/etiologia , Desamparo Aprendido , Infarto do Miocárdio/complicações , Infarto do Miocárdio/psicologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Risco
3.
FASEB J ; 32(6): 3005-3019, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401591

RESUMO

Systemic corticosteroids have been the mainstay of treatment for various hearing disorders for more than 30 yr. Accordingly, numerous studies have described glucocorticoids (GCs) and stressors to be protective in the auditory organ against damage associated with a variety of health conditions, including noise exposure. Conversely, stressors are also predictive risk factors for hearing disorders. How both of these contrasting stress actions are linked has remained elusive. Here, we demonstrate that higher corticosterone levels during acoustic trauma in female rats is highly correlated with a decline of auditory fiber responses in high-frequency cochlear regions, and that hearing thresholds and the outer hair cell functions (distortion products of otoacoustic emissions) are left unaffected. Moreover, when GC receptor (GR) or mineralocorticoid receptor (MR) activation was antagonized by mifepristone or spironolactone, respectively, GR, but not MR, inhibition significantly and permanently attenuated trauma-induced effects on auditory fiber responses, including inner hair cell ribbon loss and related reductions of early and late auditory brainstem responses. These findings strongly imply that higher corticosterone stress levels profoundly impair auditory nerve processing, which may influence central auditory acuity. These changes are likely GR mediated as they are prevented by mifepristone.-Singer, W., Kasini, K., Manthey, M., Eckert, P., Armbruster, P., Vogt, M. A., Jaumann, M., Dotta, M., Yamahara, K., Harasztosi, C., Zimmermann, U., Knipper, M., Rüttiger, L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.


Assuntos
Nervo Coclear/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Glucocorticoides/antagonistas & inibidores , Transtornos da Audição/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Mifepristona/farmacologia , Animais , Cóclea/metabolismo , Cóclea/patologia , Cóclea/fisiopatologia , Nervo Coclear/metabolismo , Nervo Coclear/patologia , Feminino , Glucocorticoides/efeitos adversos , Glucocorticoides/farmacologia , Transtornos da Audição/induzido quimicamente , Transtornos da Audição/tratamento farmacológico , Transtornos da Audição/metabolismo , Perda Auditiva Provocada por Ruído/induzido quimicamente , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo
4.
Horm Behav ; 81: 97-105, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27059527

RESUMO

The translational assessment of mechanisms underlying cognitive functions using touchscreen-based approaches for rodents is growing in popularity. In these paradigms, daily training is usually accompanied by extended food restriction to maintain animals' motivation to respond for rewards. Here, we show a transient elevation in stress hormone levels due to food restriction and touchscreen training, with subsequent adaptation effects, in fecal corticosterone metabolite concentrations, indicating effective coping in response to physical and psychological stressors. Corticosterone concentrations of experienced but training-deprived mice revealed a potential anticipation of task exposure, indicating a possible temporary environmental enrichment-like effect caused by cognitive challenge. Furthermore, the analyses of immediate early gene (IEG) immunoreactivity in the hippocampus revealed alterations in Arc, c-Fos and zif268 expression immediately following training. In addition, BDNF expression was altered as a function of satiation state during food restriction. These findings suggest that standard protocols for touchscreen-based training induce changes in hippocampal neuronal activity related to satiation and learning that should be considered when using this paradigm.


Assuntos
Glândulas Suprarrenais/metabolismo , Restrição Calórica/psicologia , Condicionamento Psicológico/fisiologia , Neurônios/metabolismo , Recompensa , Tato , Adaptação Psicológica/fisiologia , Animais , Restrição Calórica/veterinária , Corticosterona/metabolismo , Exposição Ambiental , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/psicologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...